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The calculus of variations provides an exhaustive descriptive account of the least-action
principle and other icons of nature’s parsimoniousness. However, when we seekexpla-
nationsrather than mere formal descriptions of variational principles, almost invariably
we discover acombinatorialorigin; the best known examples are thermodynamics and
Darwinian evolution. When it comes to the least-action principle, however, it is sur-
prising that reductionistic attacks of this kind have been virtually absent. An eminent
exception is, of course, Richard Feynman’s explanation in terms of quantum path in-
tegrals, but even there, though the spirit of the approach is combinatorial, the nature
of the objects that are “counted” is somewhat elusive; one is still explaining a mystery
through another mystery. Feynman himself stresses that “whoever thinks they under-
stand quantum mechanics, they don’t,” and ultimately admits “I don’t know what action
is.” The challenge we proposes is to devise “classical” models (that is, models based
on ordinary counting of large numbers of discrete objects rather than superposition of
complex amplitudes) of classical analytical mechanics. Never mind what method nature
actually uses; how come models of this kind—which, for example, were a dime a dozen
for the laws of perfect gases—are so hard to come by for the least-action principle?

KEY WORDS: least action principle; action as amount of computation; Lagrangian
mechanics.

1. INTRODUCTION

No natural action can be abbreviated. . . .
Every natural action is generated by nature in the
shortest possible way she can find.
From given causes, effects are generated by nature in
the most efficient way.

Leonardo2

One may be tempted to construe Leonardo’s words (ca. 1500) as the intuition
of a lone genius running ahead of the pack and boldly anticipating the variational

1 Electrical and Computer Engineering, Boston University, Boston, Massachusetts; e-mail: tt@bu.edu.
2 Leonardo da Vinci: “Nessuna azione naturale si p`o abreviare. . . . Ogni azione naturale `e generata
dalla natura nel pi`u brieve modo che trovar si possa” [Atl. 112 v.a.]; “Data la causa la natura opera
l’effetto nel più breve modo che operar si possa” [Ar. 132 r.].
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principles of mechanics. But Leonardo was merely expressing feelings that were
widely shared by the “intelligentsia” of the time. The neo-Platonic revival of the
Renaissance had a pantheistic conception of Nature and saw her as mystically
wise, at one timeprovidential and parsimonious(cf. Hildebrandt and Tromba,
1996)—in sum, a nature that made use of Operations Researchante litteramin
husbanding the world.

In any event, Leonardo’s words were the harbingers of ideas that gradually
took shape through the work of Fermat, Leibniz, Euler, and many others, and,
though they continued to evolve after that, were captured in a memorable snapshot
by Maupertuis’slaw of least action(1744):

If there occurs some change in nature, the amount of action necessary for this change
must be as small as possible.

Note that by this timeaction had become a technical word, even though some
vagueness still remained as to what it referred to. The meaning of “action” was
assigned in a final way by Lagrange in hisMéchanique Analitique(1788), right
before the French Revolution. Concurrently, the “law of least action,” which for
Maupertuis still had a strongly mystical flavor, had matured into theprinciple of
stationary action—a coolly detached statement of fact about certain formal aspects
of Newtonian Mechanics. As a mathematical physicist, the business of Lagrange
was not to prescribe (give teleological motivations) or explain (give reasons why),
but toprove—that is, extract interesting tautologies.

Yet a principle of such simplicity and power demands an explanation. If,
given the laws of Netwonian mechanics, one can conclude that any actual dynam-
ical trajectory is privileged in so far as the action along it isminimal (or, at least,
stationary) with respect to the swarm of virtual trajectories that surround it, one is
certainly entitled to ask, “Yes, but why is Newtonian mechanics such? Why are its
trajectories so privileged? Could it not have been otherwise? Is a trajectory taken
because it is privileged, or does it appear privileged because it is taken?”

Some sort of explanation in this sense for the principle of least action (it will
be convenient continuing calling it thus) was finally provided by Feynman with his
formulation of quantum mechanics in terms ofquantum path integrals(Feynman
and Hibbs, 1965).

Feynman’s answer was basically of the following kind. The Newtonian trajec-
tories are not part of fundamental physics—they are a statistical artefact. Consider
the space of all possible quantum paths, each of which has a definite value of
action determined by an action integral taken along the path. Let us navigate on
an arbitrary course through the space ofpaths, all the while monitoring the action
“dial,” whose needle will of course go up and down as we move along. Associated
with this dial there is aquantum wave amplitudemeter that separately displays
the magnitude and the phase of the current path’s quantum amplitude (a complex
number). The phase—so it turns out in quantum mechanics—is just the action
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wrapped around a circular scale, so that as the action goes up and down, the phase
needle revolves around a circle, coming back to the same position after an entire
turn. Whenever the action needle stops moving for a moment (for instance, when
the action is about to reverse course) the phase needle itself will stop rotating—it
will remain stationary—for a moment.

What is a neighbohood of a point in path space is better visualized as a “bun-
dle” of paths in spacetime. Now, in quantum mechanics the probability of a bundle
of paths is not proportional tohow manypaths the bundle contains—as one steeped
in classical statistical mechanics might expect—but to theabsolute square(in the
sense of|ψ∗ψ |) of the sum of their amplitudes (Feynman and Hibbs, 1965). When,
during our voyage in path space, the rate of change of action is high, in a brief space
the phase will go through several turns. The quantum amplitudes of neighboring
points will destructively interfere with one another and thus the probability of a
bundle of neighboring paths will be close to zero.3 Only when the rate of change
of action vanishes—i.e., the action needle isstationary—will the amplitudes of
neighboring paths add up constructively, yielding a nonvanishing probability for
the bundle. Thus, spreading a Lagrangian blanket over (q, q̇, t) space is equivalent
to spreading a probability blanket over path space. The latter blanket will generally
lay low and flat, but will be crisscrossed by a web of high probability “ribs.”4 It
is us whosingle outfor special consideration these “probability wrinkles” on an
otherwise flat blanket—and record them in our maps as Newtonian trajectories.

Thus, in Feynman’s scheme of things, no “providential hand” is steering tra-
jectories so as to minimize a certain “action expenditure.” Rather, microscopic
quantum paths uniformly cover all path space, but their effects cancel out every-
where except in certain distinguished regions. To “high-density”5 neighborhoods
in path space there correspond high-probability bundles of microscopic paths in
spacetime. From a distance, these bundles may appear so narrow that we can ide-
alize them as lines of zero width. It is these ideal lines that older physicists had
been calling “Newtonian Trajectories.”

There are two reasons why Feynman’s “explanation” of the least-action prin-
ciple may leave one somewehat less than satisfied.

The first reason is that the quantum path integral argument explains action—
a quantity that was devised wholly within classical mechanics and had at least
two centuries of independent currency in it—on the basis of quantum mechan-
ics. Does that mean that, if quantum mechanics hadn’t been arrived at yet, then

3 More precisely, ifN is the number of paths in the bundle, the probability of this bundle will be pro-
portional to

√
N—rather than toN itself as in the classical case. The relative probability, proportional

to N/
√

N, will vanish asN becomes large.
4 An even better image may be soap-bubble foam, which is mostly low-density air except for a web
of high-density soap-water walls, edges, and vertices (keep in mind, though, that path space has a
fantastically large number of dimensions).

5 In the absolute-square-sum-of-amplitudes sense seen above rather than in terms of mere count.
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action would have to remain unexplained? Remark that there are in physics other
principles of scope comparable to that of least action, and which also address phe-
nomena apparently manifesting teleological or providential “forces,” and which,
however, unlike the least-action principle, are fully explained by internal logic,
without involving postulates of an external nature. We have in mind, specifically,
themaximum entropyprinciple (Jaynes, 1957), which fully accounts for classical
statistical–mechanical phenomena purely in terms of classical mechanics, as well
as quantum statistical phenomena in terms of quantum mechanics.

The second reason is that, besides being external—as it were—to classical
mechanics, the quantum mechanics in terms of which the above path-integral
argument claims to “explain” the least-action principle is itselfunexplained—
and it is Feynman himself that forcefully keeps reminding us of that (Feynman,
1963). Thus, we have reduced ourselves to explaining amysticalprinciple in terms
of a mysteriousprinciple. How much have we really gained? Richard Feynman
himself, even after having stalked action—as we’ve seen—at closer distance than
any other mortal, would still confess “I don’t know what action is.” Apparently,
there are more veils to be lifted. By contrast, in spite of the veil of mystery that
accompanied it through much of its life, today we can confidently say that we
know whatentropyis.

Be it clear that I do not claim to explain the least-action principle here. What
I want to ask is, Did we really have to wait for quantum mechanics in order to
have some explanation of this principle? Whether or not the explanation provided
by quantum mechanics is the true and ultimate one, couldn’t we formulate other
plausible explanations within classical mechanics itself? This is what happened, for
example, for thermodynamics, which appeared to introduce its own independent
set of quantities and laws,6 but ultimately was shown, via statistical mechanics—
and thus by purely logical and combinatorial (that is,not irreducibly physical)
arguments—to be but an epiphenomenon on top of ordinary mechanics (classical
or quantum as one’s level of investigation requires).

I will tell an edifying story here. In addressing the issue of the “spring of
air” (what today we call Boyle’s law for ideal gases,pV = const), Boyle (1660)
compared air particles to coiled-up balls of wool orsprings(what else?) which
would resist compression and expand into any available space (Brush, 1976).
Newton toyed with this idea and showed that first neighbors repelling one another
inversely as the distancewould give the required macroscopic behavior. What
became popular next is models viewing air as a swarm of discrete particles freely
jostling about and interacting with one another in some prescribed way, and Newton
himself considered one with short rangeattractiveforces. Bernouilli considered
elastic collisions between hard spheres (“billiard ball” model), while Maxwell
consideredrepulsionwith an inverse power law—fifth-power being preferred for
its computational advantages. Much more recently (1931), taking into account the

6 cf. the Pure Thermodynamics of Mach and Ostwald (Brush, 1976).
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quantum–mechanical electrical structure of orbitals, Lennard–Jones established,
for simple nonpolar molecules an inverse seventh-power attractive law.

The moral of this story is that, if one is looking for a microscopic model
for the laws of ideal gases, there is no dearth ofplausiblecandidates. On the
contrary, the same generic macroscopic behavior embodied by these laws will
emerge fromalmost anymicroscopic model—using attractive or repulsive forces,
power-law or exponential or whatever—that displays certain basic symmetries.
In fact, even a modelwith no interactions whatsoeverbetween particles—only
collisions with the container’s walls—will do perfectly well. The “spring of air”
is the most generic macroscopic expression of certain conservation laws, not of
the details of a particular microscopic dynamics. Conversely, the fact that many
power-law repulsive models gave the right macroscopic results was no guaran-
tee that the interparticle forces are repulsive, power-law, or, least of all, fifth-
power. If there was an embarassment with the “spring of air” it was not that
there was no plausibel model for it, but that there were too many to choose
from.

Given the generality andgenericityof the least-action principle, I’m amazed
that the same predicament—having many plausible explanations and at worst not
knowing how to pick the right one—did not occur. Instead, apparently no expla-
nation at all was extant until the one based on quantum path integrals came on the
scene. Virtually anywhere we turn—statistical mechanics, economics, operations
research, population genetics, etc.—variational principles are obviously the sur-
face expression of anunderlying fine-grained combinatorics. On the other hand,
virtually all books that I have seen that deal with the calculus of variations from a
mathematical viewpoint (e.g., Denn, 1978; Forsyth, 1960; Sagan, 1969; Weinstock,
1974)—and these include the books on analytical mechanics (e.g., Aenold, 1978;
Goldstein, 1980; Lanczos, 1970; Sussmanet al., 2001; Yourgrau and Mandelstan,
1979)—do not evenentertain the possibilityof a combinatorial origin. What’s
even graver, they do not mention that most variational principles happen to be of
a mathematical formthat, whatever its actual origin in each specific case, would
most naturallyemergefrom an underlying fine-grained combinatorics.

In brief, I am reluctant to accept the law of least action as an unexplained
first principle, or, for that matter, one whoseonly possible reduction were the
quantum-mechanical “explanation”. I’d be much happier if there were a range of
plausible combinatorial hypotheses (one may imagine fine-grained, “sub-
microscopic” mechanical models, or models where uncertainty about the dynam-
ical laws or the state of the system’s environment are taken into explicit consid-
eration) from which the least-action principle would plainly emerge as a genuine
statistical consequence—a feature of aggregate behavior. One would then have to
decide which of these models satisfied additional requirementsbesidesthe least-
action principle.

In this paper I will briefly consider a number of combinatorial approaches that
present themselves as obvious “first-interview” candidates (whatever their ultimate
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merits) for the role of generator of the least-action principle. Whether the quantum–
mechanical “explanation” should be counted among these depends on whether we
think of quantum mechanics as a better (that is, more refined, more complete, and,
at bottom, more precise) form of statistical mechanics (Youssef, 2001)—and thus a
genericinference theorysuperposed on certain irreducibly physical primitives (cf.
Jaynes’Probability: The Logic of Science; Jaynes, in press)—or rather itself part
and parcel of those physical primitives, like most physicists are inclined to believe.

2. TYPICAL COMBINATORIAL ORIGIN
OF VARIATIONAL PRINCIPLES

There is this summer camp with 100 kids. They are pennyless since they
have spent all their money on their last visit to town. But on coming back to camp
one of the kids finds an envelope with $100 in one-dollar bills from his parents.
For the next week they do not leave camp and no more money arrives. You know
kids—they buy, sell, “traffic”. By the end of the week the $100 will be somehow
redistributed among the 100 kids. What distribution do you expect?

You are not given any details about the dynamics of this system or its initial
conditions. All you know is that money isstrictly conservedand that 1 week
is enough time for money to change hands innumerable times. In principle,any
partition of this money, that is, any assignment〈n1, n2, . . .n100〉 of ni dollars to
kid i , is possible, provided that

n1+ n2+ · · · + n100= 100.

One may maintain that there is no reason to prefer any one of these partitions
to any other, in which case all the different partitions would be attributed thesame
probability. In turn, this probability can be justified in terms of a deeper argument:
Consider the set of all possible combinations ofdynamicsandinitial conditions,
and for each derive the resulting partition of $100 among the 100 kids. This an
astronomically-many-to-one correspondence, the set of dynamics folding over the
set of partitions innumerable times.

Thus, we are distributing dynamics over partitions, and the latter distribute
dollars over kids. Unlessboth processes have perverse biases, the dollar expec-
tation will be the same for all kids, namely, $100/100= $1. The point we are
going to make, trivial as it may be, is that thisexpected partition—a flat distribu-
tion of money over kids, as it happens—can be described indirectly by means of
variational principle.

Letqi be the dollar expectation for kidi . We demand a “trajectory”q1, q2, . . .,
q100 such that

q1+ q2+ · · · + q100= 1 (1)

and such that the integral over the trajectory of a certaincost functionbe stationary
with respect to infinitesimal variations of the trajectory itself. The variations can
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be arbitrary, except that the variated trajectories must satisfy the normalization
condition (1). As a cost function we will assign

L(q) = q2. (2)

Like the Lagrangian of a dynamical system, which need not be justified since
it is whatdefinesthe system, so our cost functionL(q) need not be justified—it
suffices that it generate the desired trajectory. However, our choice can be motivated
on combinatorial grounds, the square function being essentially the−log of the
binomial distribution. In other words,−q2

i expresses (up to an additive constant)
the contribution given to the entropy of the distribution{q1, . . . , q100} by an an
expectationqi for kid i . In brief, we make a large value forq lead to a “costly”
variation because it isunlikely in the underlying combinatorics. Note that this is
no more and no less than the principle of least squares.

It turns out that the flat “trajectory”,q1 = q2 = · · · = q100≡ 1, is the one for
which the overall costS=∑i L(qi ) is extremal. In fact, we require that

δS≡
∑

i

L(qi + δqi )−
∑

i

L(qi ) = 0 (3)

subject to (1) and thus to
∑

i δqi = 0. But, from (3),

δS=
∑

i

2qi δqi + (δqi )
2,

which, if all theqi have the same valuēq = 1, reduces to

δS=
∑

i

(δqi )
2.

As a sum of squares, this is minimized when each individual term is zero.
If we turn now to a canonical example from the calculus of variations, that

is, the issue of what shape is acquired under gravity by a chain stretched between
two points, we find a combinatorial origin for the resulting shape (which happens
to be acatenary) and a clarification ofwhatprecisely this is the shape of—matters
about which variational textbooks are unaccountably silent.

Let a chain be suspended between points. At timet = 0 the chain is given a
vigorous shake, so that it will start with the shape indicated in Fig. 1(a); each chain
element will of course have a velocity besides a position, but that is not indicated in
the figure. We assume ideal Newtonian mechanics—no friction, no air resistance,
etc. Gravity is turned on, pulling downwards. We wait a long time and then we
look again; what shape do we expect to see? Perhaps that of Fig. 1(b)?

Nonsense! The chain will have been quivering and snaking all the while, and,
for all we know (which is little because the initial velocities were not recorded), it
may now display any of the configurations compatible with the initial conditions;
typically, we will see something like Fig. 1(c).
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Fig. 1. (a) Initial configuration of a chain suspended be-
tween two points and given a vigorous shake. Though the
chain is of course in motion at this moment, the velocity of
the chain elements is not indicated in the figure. As is well
known, the rest configuration of the chain is the catenary
(b). However, in the stated regime (no friction) the chain
will never come to rest configuration (c) is typical of what
the chain may look like some time later. The catenary shape
will be achieved only in the presence of damping, and then
only approximatelybecause, by its very nature, damping
cannot be disassociated from some amount of wiggle.

In order to get something like a catenary we’ll have to let air in and thus in-
troduce a number of new degrees of freedom (a swarm of jostling particles) much
larger than the number of chain elements. Under these conditions the energy of the
chain will distribute itself evenly, on average, among all the available degrees of
freedom, new and old, just as the $100 did in the summer camp.7 The resulting chain
configuration will not be strictly a catenary—since air and chain will keep interact-
ing and forever disturbing one another8 —but theexpectedconfiguration, that is,
the mean of the microscopic configurations that make up the equilibrium ensemble,
will be a smooth curve that can be made arbitrarily close to a catenary (Fig. 1(b)) by
using a sufficiently large number of gas particles at a sufficiently low temperature.

Remark that

• No damping⇒No equilibrium configuration (never mind a catenary) will
emerge.
• Damping⇒No rest can ever be achieved. The ever-changing microscopic

configuration will not be a catenary, but the latter will be achievedin the
mean(and then only in the limit for infinitely-fine-grained damping).

In conclusion, we see that the catenary curve prescribed by whatever vari-
ational principle is appropriate to the present case is not an actual configuration
but a mathematical expectation obtained by taking the mean of a large family of

7 Viewed from the standpoint of microscopic combinatorics, the theorem ofequipartition of energyis
but an admission of ignorance. In the summer camp case, we do not pretend to know that each kid
will ultimately end upwith $1; we only mean that that is each kid’s expected share.

8 See Feynman’s admirable discussion (Feynman, 1963) on why damping is a Faustian bargain: the
price of being driven towards equilibrium is never to be able to attain rest.
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Fig. 2. Two discrete dynamical systems, each con-
sisting of eight states. The first system,A, is invert-
ible. The second,B, is not, since stateu, for one,
has no predecessors and statec has two.

microscopic curves. Whether the latter are actualized—for instance by letting the
system run for a long time so that a time average can be collected—or are mentally
contemplated as the set of all curves compatible with our lack of information, the
catenary itself will be a statistical construct in either case. The situation is similar to
that occurring in systems that rely on error for feedback, like a furnace/thermostat
loop. The ideal “steady” temperature that is so achieved is actually the mean of a
temperature that is continually ramping up and down.

Thus, when we read the fine print, we realize that the one “ideal” trajectory
that the variational principles advertise turns out to be a blurred version of a large
collection of “somewhat defective” ones.

In the summer camp example, the dissipative cascade that led to the emergence
of a distinguished equilibrium distribution was initiated by the arrival of $100. In
the catenary example, it was initiated by letting air—as a damping agent—into the
system. How many ways are there to set up a dissipation/emergence engine?

3. WHAT COULD DRIVE AN INVISIBLE HAND?

3.1. Emergence by Microscopic Irreversibility

For us, adynamical systemis a just a map from a state set to itself.9 The
simplest way to see how preferred configurations or trajectories emerge in dissi-
pative systems is to compare an invertible dynamical system with one that is not
(see Fig. 2). By construction, each state has exactly one successor; if each state
also has exactly onepredecessor, then the system is invertible. In Fig. 2, for each
state (denoted by a dot) the dynamics specifies (through an arrow) its successor.
SystemA is clearly invertible. On the other hand, systemB is noninvertible; for
example,u has no predecessors andc has for predecessors bothb ande.

Let the dynamics of systemsA andB be publicly announced. Now I think of
a specific initial stateq0 and ask you to guess it (hereafter, I will not give you any

9 This for a discrete-time, time-independent system. For the sake of our argument, there is no need to
consider more general cases.
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feedback on your guesses). For either system, you have a 1-in-8 chance of guessing
q0 right; in other words, the entropy of the situation is for you 3 bits (3= log2 8).
We now “turn the crank,” i.e., let the dynamics advance by one step, so that each
state flows into its successor; specifically,q0 will flow into a stateq1. I ask you
to guessq1. For systemA, your uncertainty is still 1-in-8, but for systemB it is
only 1-in-5, because after the first step statesa, m, andu are no longer possible,
since no states flow into them. Similarly for the stateq2 reached after two steps,
only four possibilities remain, namelyc, d, e, andw, and in this example they all
happen to have the same probability, 1/4. No further states are lost on subsequent
steps, and in fact already by the second step the system has attained the invariant
distribution (14, 1

4, 1
4, 1

4) over those four states. Your initial uncertainty of 3 bits is
thus ultimately reduced to 2 bits. The system has somewhat “ordered” itself, in the
sense that you know more about its state now than you did at the beginning.

Where has this “new” information sprung from? Clearly, it was implicitly
contained in the dynamics itself and it was “revealed” (like in a photographic de-
veloper bath) by running a certain number of steps. While invertible systems are by
construction “information lossless,” and thus preserve from step to step the amount
of uncertainty about their current microstate, noninvertible systems typically “leak
out” information, gradually reducing the amount of uncertainty about their state.
Every time two trajectories merge, the system loses the information needed to
know which of the two it came from; as we saw for systemB, microstates that
initially used to be accessible to the dynamics may from a certain point on be-
come no longer accessible. If a noninvertible system started in a highly disordered
macrostate eventually produces, say, a flower, it is because flower-like patterns,
among all others, are preferentially retained by the dynamics as time goes by.

In Fig. 3, the middle panel shows a random initial state for a two-dimensional
cellular automation. The left panel shows the state reached from there after
100 steps of an invertible dynamicsσ , namely, an Ising spin model. The right
panel shows the state reached after the same number of steps of anoninvertible

Fig. 3. We start from a maximally random initial state (middle). Running
100 steps of invertible dynamicsσ—an Ising spin model—give us another
maximally random state (left). On the other hand, 100 steps ofnoninvertible
dynamicsτ—a majority-voting rule—lead to the emergence of large homoge-
neous regions with characteristic boundary shapes.
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Fig. 4. With majority voting, small enclaves of one
party get absorbed by the other party: the boundary
between domains advances at a rate proportional to
thecurvature, thus trying tominimizeboundary length.
Here is a time-lapse photo combining four uniformly
spaced snapshots.

dynamicsτ , namely, a majority-voting rule; note the emergence of domains with
boundary shapes characteristic of majority-voting’sannealingbehavior.

Because of the built-in tendency, with this voting scheme, for majorities to
encroach on minorities, the boundary between adjacent domains moves with a
speed approximately proportional to its curvature: smaller pockets are engulfed
faster; this is illustrated by the time-lapse composite of Fig. 4. It is evident that
boundaries move as if they were striving tominimizetheir overall length. We thus
see macroscopic behavior that not only spontaneously proceeds toward greater
order, but seems to do so under the guidance of a variational principle.

3.2. Emergence by Low-Entropy Initial Conditions

A related mode of emergence is that which occurs,even when the underlying
dynamics is invertible, from low-entropy initial conditions. As soon as the dynam-
ics’ “crank” starts turning, this initial low-entropy state may start leaking into new
regions of phase space, leading to a state of higher coarse-grained entropy.10 The
pattern or texture representative of this new state may look quite different from the
original one. Specifically, microscopic correlations buried in the initial state may
be converted into more visible macroscopic regularities.

This process of “directed evolution” will continue as long as the system can
slide towards higher coarse-grained entropy, but will eventually slow down and
grind to a halt as the system approaches equilibrium. Figure 5 shows a typical
example of emergence of texture in an invertible system; we must remember that
this is in reality a transition from hidden microscopic regularities to more evident
coarse-grained ones.

10If the system is invertible, thefine-grainedentropy will of course remain constant.
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Fig. 5. Here the invertible microscopic dynamics is the same Ising spin
model as used in the leftward path of Fig. 3. This time, however, we
injected in the initial conditions some regularity at the microscopic
level, in the form of a fine-grained checkerboard sprinkled with a mi-
nuscule amount of randomness (left). This regularity can be used as
“fuel” to drive emergent behavior at a more macroscopic level (right).
Note that, even though the microscopic dynamics remains that of the
Ising model, the emergent dynamics is similar to that of the majority
rule of Fig. 3 and, like the latter, tends to shrink domain boundaries as if
driven by a variational principle. However, in this case the driving “en-
gine” eventually runs out of statistical fuel and—unlike in the majority
dynamics—the shrinking process does not go on indefinitely.

3.3. Emergence by Darwinian Evolution

In both of the previous sections, the emergence of characteristic patterns is
obtained at the cost ofrunning downirreplaceable “batteries”—namely, the “fresh-
ness” of the dynamics in the case of noninvertible systems, and the “orderliness”
of the starting state in the case of a low-entropy initial configuration.

There may be circumstances, however, where a distinguished region of the
system is effectively endowed with a permanent “power supply” instead of finite-
life batteries—a mechanism whose ultimate effect is to drain off disorder even as
it accumulates.11

An eminent example of power-assisted emergent dynamics islife on the
surface of the Earth, which is sandwiched between the Sun—a steady source of
predictable radiation—and the black cosmic background—an undiscriminating
absorber of the reradiated thermal noise. Of course, this sharp dichotomy between
light and darkness will not last forever; in the mean time, however, the thin, two-
dimensional region where we live provides an ideal stage for the enacting of
emergent dynamics.

11Typically, this is done by convection: a flow of high-grade energy is steadily pumped into that
distinguished region, while low-grade, thermalized energy is pumped out.



P1: GRA

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464437 June 12, 2003 18:38 Style file version May 30th, 2002

What Is the Lagrangian Counting? 375

The reader must be familiar with the fable of the investment consulting firm
who sent a free advice newsletter saying, “Tomorrow IBM stock will go up” to 512
prospective customers, and “will go down” to another 512. Whichever way it turned
out, the 512 prospects that had received wrong advice would be thenceforward
ignored, while the “successful” 512 would be divided into two groups of 256 each.
The mailing and subsequent culling would be repeated in a similar way for these
two groups, and so on recursively eight times, at which point there would be only
four prospects left—but these would have received an unbroken sequence of eight
successful predictions. At this point the consulting firm would move in for the
kill. Writing only to those four, they would say: “By now you must be convinced
that we draw on very reliable proprietary forecasting methods. May we suggest
that, for only $100,000 a year, you subscribe to our privileged weekly newsletter
service?” (Not surprisingly, the next 52 issues of the newsletter will turn out to
have only a 50% hit rate. What the heck—let the buyer beware!)

Regrettably, the above culling process had to shrink the pool of prospects
from 1024 to 4, and clearly the remaining 1020 cannot be recycled for a new
scam of the same kind. Wouldn’t it be nice if we could make the latter group
disappear from the face of the earth, and replace them with “clones” of the four
that got all right predictions, thus amplifying their number from 4 to 1024? We
could then, for example, stretch our preparatory mailing sequence by eight more
accurate predictions, as if we had started from a base of 256k prospects rather than
only 1k—but note that our costs will now belinear (rather than exponential) in
the number of prediction stages.

This, in a nutshell, is what happens inDarwinian evolution. Its mechanism is
a “power-assisted magnifier” that allows one to zoom in on what works best, blow
it up to full scale, and sweep the rest out of the picture—and keep doing that over
and over.

3.4. Emergence by External Conditioning of a Nanoscopic Dynamics

In the earlier three cases, thedissipative cullingof configurations was done by
means of resourcesrunning within the physics. In fact, in section 3.1 the one-time
“batteries” came with the system itself, and the latter becomes useless as mecha-
nism for driving emergence once these batteries have run down.12 In section 3.2
the system came with no batteries; those had to be put in by the user in the form of
a low-entropy initial state. When this source ran down, the emergence experiment
would come to an end. In section 3.3 finally, the system came accompanied by a
lifetime contract with a power company, so that one did not have to worry about
running out of power.

12Just like disposable flashlights, which become useless for illumination purposes once their batteries
are exhausted.
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In analytical mechanics and in quantum mechanics, on the other hand, what-
ever culling is performed by the principle of least action cannot be driven by a
dissipative cascade, since both theories purport to be conservative theories—what
you see is what you get—not accounts of irreversible statistical epiphenomena. In
other words, the world of analytical mechanics (as contrasted tostatisticalmechan-
ics) never winds down (orbits can be traversed indifferently forward or backwards
by “frictionless coastling”). Not only does it not need batteries to keep running but
also it has no room for any.

In Fig. 1, the catenary was selected as a limiting mean shape out of innumer-
able alternative shapes by a physical process running in actual time: at one moment
we see a shape that was definitely not a catenary and a little later we see a shape
that is close to a catenary. If the least-action principle cannot make use of actual
physical dissipation as a mechanism to select the desired mechanical trajectory
out of innumerable alternatives, what other resources can be responsible for the
selection process we wish to explain?

Our general plan is to have some underlying combinatorics do the dirty work
on behalf of the least-action principle.

First of all, we’ll have to summon the information–mechanical machinery
within which this combinatorics will play itself out. It is tempting to postulate,
for this purpose, an even finer-grained level of dynamics, which we may call
nanomechanics, according to the following hierarchy

2 macromechanics ordinary statistical mechanics
1 micromechanics ordinary analytical mechanics
0 nanomechanics the postulated finer-grained dynamics

Second, we must remember that the “culling” performed by the least-action
principle operates ontrajectories, not onstates. Thus, while statistical mechanics
establishes correspondence principles between collections, ensembles, or distri-
butions of microstates from level 1 and constructs of level 2, generally called
macrostates, we will be trying to interpret analytical mechanics as a theory of “ag-
gregate behavior” establishing correspondence principles between collections or
“bundles” of nanotrajectories from level 0 and the microtrajectories (the ordinary
mechanical trajectories) of level 1. Note that Feynman’s quantum paths belong to
the same general class of constructs as these nanotrajectories.

Third, even though I greatly appreciate the value of themaximum-entropy
principle (Jaynes, 1957) and the rationale behind it, for the present purposes I
prefer to utilize a weaker, more tautological—and thus more compelling—version
of it. Namely, if in a certain inference problem we are uncertain as to which
macrostate out of arange of possible macrostatesshould be used for making
statistical predictions, the maximum-entropy principle recommends that we use
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the one having the greatest entropy.13 The weaker form of the principle I have
in mind is that we should construct instead a new macrostate-like object from a
weighted averageof that range of macrostates (note that, unlike the maximum-
entropy macrostate, this new objectneed notbe itself a macrostate from that
range), and use that object as a representative for the whole range; in this way,
all of the elements of the range contributeadditively to their representative. In
any case, microtrajectories at level 1 are obtained as representatives of bundles
of nanotrajectories from level 0. Note that Feynman’s constructing an average
amplitude for a bundle of neighboring paths and associating this average (and, at
a later stage, its square) with the whole bundle—which is not itself a quantum
path—belongs to the same general kind of approach.

Fourth, we have no qualms with the Bayesian approach of viewing probability
as a “degree of belief” represented by a real number between 0 and 1 and continually
updated as new conditioning information becomes available. However, we prefer
to view the universe of potential outcomes (as well as the events, which are subsets
of this universe) asfinitesets—at least in principle. Instead of being introduced as
a primitive concept, probability would then be aderivedone, namely, the relative
size (a ratio of integers) of an event.14 This position eliminates the paradox of “what
probability measure should we use to prime the Bayesian pump with?” since there
would be onlyoneprobability measure to choose from.

Accordingly, our hypothetical nanomechanics—whatever its details—will
have discrete configurations and discrete evolution rules, and each nanotrajectory
that takes part in a ballot will have exactly one vote.

Finally, let us recall that the task of the least-action principle is to convert an
implicit specification for a trajectory into an explicit one.15 In Hamiltonian me-
chanics, the implicit specification is the initialphase〈q0, p0〉 and the explicit one
is the corresponding phase〈q(t), p(t)〉 at any later (or earlier) timet . The conver-
sion is driven by a compressed but nonetheless rather transparent description of
the dynamics, namely theHamiltonian“lookup table”H (q, p). To “uncompress”
this description we use a “continuous algorithm” called Hamilton’s equations: If
we fix the “address’q and slightly move the other address fromp to p+ ∂p, the
corresponding amount of change∂H in the table’s value explicitly specifies the
rate of change ofq, namely,q = ∂H/∂p. Similarly (with just a change of sign)
for the rate of change ofp.

In Lagrangian mechanics, we implicitly specify a trajectory between two
times t0 and t1 by giving half of the informationin the form of the initial con-
figurationq0. For the other half of the information, instead of giving the velocity

13We are are skipping over some fine print here.
14Mine is by no means a frequentist position. Initial probabilities remain apriori , because they are

part of thedefinitionof a system (Cox, 1946).
15See Sussman, Wisdom, and Mayer (2001) for an admirable exposition.
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(or momentum) at the same timet = 0 one gives thefinal configurationq1. The
conversion of this information to an explicit trajectory is driven by a compressed
description of the dynamics, namely theLagrangian“lookup table”L(q, q̇). The
“continuous algorithm” that “uncompresses” the Lagrangian by applying the least-
action principle is called the Euler–Lagrange equation; this algorithm is a tad more
complex than the one used for the Hamiltonian.

In either case, the given information (〈q0, p0〉or〈q0, q1〉) completely specifies
the intended microtrajectory out of a large set of potential ones. By introducing
a nanomechanicsone provides a much larger set of potential “nanotrajectories.”
After the “culling and weeding” of this set caused by supplying〈q0, q1〉 (for
example) asconditioning information, one may be left with a bundle ofmany
nanotrajectories rather than just one.All of the nanotrajectories of this bundle
would be associated with the sought-for microtrajectory.

An “explanation” of the least-action principle that we would be willing to
accept as a real explanation is, for instance, one in which thenumerical valueof
the integral of the Lagrangian function over a microtrajectory—that is, theaction
integral—were shown to stand for thelogarithm16 of thenumber of nanotrajectories
associated with that microtrajectory.

4. A FEW QUESTIONS

Many papers in the past attempted to provide a material interpretation of the
variational principles of mechanics, but of course tended to do so in terms of other
continuum theories like wave-front optics. For example, in a paper written a few
years after Feynman’s seminal paper on quantum path integrals (Feynman, 1948),
Landauer (1952) discusses certain aproximate correspondence rules between quan-
tum mechanics and Hamilton–Jacobi theory and gives a pictorial discussion of the
solutions of the Hamilton–Jacobi equation in terms of swarms of particles. How-
ever, these particles simply mark the direction and the velocity of the flow, like
magnetic lines of force; their number is not meaningful.

In “Action, or the fungibility of computation” (Toffoli, 1998) we give a few
toy examples of nanomechanics from which a definite micromechanics emerges
along the lines sketched in section 3.4. Specifically, we consider the dynamics of
a digital string that had been studied by the Information Mechanics group at MIT
(cf. Margolus, 1988; Smith, 1994). From a distance, this looks like a classical
elastic string, with position and velocity varying in a continuous way along the
string. On a closer view, it becomes evident that the velocity is no longer a second
independent parameter but, just like the overall shape, is an emergent aspect of the

16Of course up to a scale factor (including sign) and an additive constant; other gaging transformations
may be appropriate.
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fine-grained configuration.17 For such a string to go through a certain motion it is
necessary not only that the appropriate coarse-grained shapes succeed one another
so as to produce the correct “movie” of the motion, but also that the fine-grained
shapes, which determine the velocities, are compatible with the velocities that are
observed. Thus, the “chances” (in terms of number of available nanotrajectories)
to go from configurationP to Q and from there toR is not just the product of the
number of nanotrajectories in theP-to-Q bundle times that in theQ-to-R bundle
(as if we were estimating the chances of going from Boston to Washington in
certain time by multiplying the frequency of the Boston-to-New York trains by
that of New York-to-Washington trains); these “chances” also depends on how
many paths of the first bundle are compatible, in terms offine-grainedshape on
arriving atQ, with those of the second bundle, which depart fromQ. By needing
to have these “proper joining” constraints satisfied along the paths, a dynamics
of this kind may achieve something akin tophaseand interferenceby purely
combinatorial means, without having to make recourse to complex amplitudes.

These example, however, are still too sketchy to provide a coherent theory of
emergence of anaytical mechanics from a “nanoworld,” or even a reliable sense of
direction for such a theory.

A related tack, also mentioned in Toffoli (1998) is to observe that, in
Lagrangian mechanics, each virtual path, even if not a trajectory of the given dy-
namics, is a solution ofsome otherdynamics of the same general class. Counting
virtual paths is thus a way to countalternative dynamics, or—which is the same—
expressing the amount of uncertainty aboutwhich nanodynamics is operatingthat
is left after observing, say, a small piece of legitimate microtrajectory.18

We thus can conceive of a hierarchy of “lacks of knowledge” in physics, each
with its associated kind of statistical mechanics or, better,inference theory; namely

• Uncertainty as towhich state. We all agree that that is whatentropy
measures.
• Uncertainty as towhich trajectory. My guess is that that is whataction

really is. But trajectories are, after all,computations—ways to know what
outputq1 will be produced by inputq0 once we assign a dynamics. In this
sense, action measuresamount of computationjust as entropy measures
amount ofinformation(cf. Toffoli, 1998).
• Uncertainty as towhich law. What physical quantity measures the amount

of thisuncertainty? Should we invent one?

17This may remind one of Mach’s attempts to explain all potential energy as some form of “trapped”
kinetic energy.

18Imagine observing two people playing chess. How sure can you be, after watching them for three
moves, that they are actually playing chess rather than some other chess-like game? Given some
metarules about what a game should be like, how many different games could they be playing?
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Finally—and that of course is a Holy Grail that may stimulate exploration and
adventure whether or not it actually exists—one may wonder whether, instead of
quantum mechanics throwing light on the least-action principle, a combinatorial
explanation of classical analytical mechanics may not help imagine a reductionistic
interpretation of quantum mechanics itself.

5. CONCLUSIONS

In conclusion, the present kind of questions are important not so much as
a way of justifying a posteriori, in the twenty-first century, the state-of-the-art
structure of physics at the beginning of the nineteenth. Rather, the motivation
is that principles of great generality must be by their very naturetrivial , that is,
expressions of broad tautological identities. If the principle of least action, which is
so general, still looks somewhat mysterious, that means we still do not understand
what it is really an expression of—what it is trying to tell us.
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